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Departamento de Fı́sica Teórica, Facultad de Ciencias, 50009, Zaragoza, Spain

E-mail: javier@unizar.es

Received 18 December 2009, in final form 11 March 2010
Published 15 April 2010
Online at stacks.iop.org/JPhysA/43/185303

Abstract
Recently, it has been proved that a nonlinear quantum oscillator, generalization
of the isotonic one, is exactly solvable for certain values of its parameters. Here,
we show that the Schrödinger equation for such an oscillator can be transformed
into a confluent Heun equation. We give a very simple and efficient algorithm to
solve it numerically, no matter what the values of the parameters are. Algebraic
quasi-polynomial solutions, for particular values of the parameters, are found.

PACS numbers: 03.65.Ge, 02.30.Gp, 02.30.Hq
Mathematics Subject Classification: 81Q05, 91U15, 34B30, 33C15, 33C45zc

1. Introduction

Two years ago, Cariñena et al [1] considered a quantum oscillator, intermediate between the
harmonic and the isotonic ones, whose Schrödinger equation reads

d2

dx2
� −

[
ω2x2 + 2g

x2 − a2

(x2 + a2)2

]
� + 2E � = 0. (1)

The interest of those authors in that problem lies in the fact that, as they proved, it is
exactly solvable for certain values of the parameters, namely, g = 2, and ω and a such
that ωa2 = 1/2. Very recently, Fellows and Smith [2] have shown that this particular case of
generalized isotonic oscillator is a supersymmetric partner of the harmonic oscillator. This
fact has allowed them to reproduce the results of [1] in a very concise and elegant manner,
and even to construct an infinite set of oscillators, with potentials approaching that of an
isotonic oscillator as x → ∞, all of them being partners of the harmonic oscillator and,
therefore, exactly solvable. Related also to the generalized isotonic oscillator of Cariñena
et al, another class of exactly solvable problems has been obtained by Kraenkel and
Senthilvelan [3]. They have used point canonical transformations to convert equation (1)
into a Schrödinger equation with a position-dependent effective mass, which, with adequate
mass distributions, may represent different problems encountered in semiconductor physics.
On the other hand, in view of the considerable progress in the synthesis of artificial quantized
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structures, a great variety of shapes for the potential wells and barriers are easily feasible, and
it seems plausible to see generalized isotonic oscillators as possible representations of realistic
quantum dots.

The rising interest on generalized isotonic oscillators has led us to try to contribute to a
better understanding of their main features. Dealing with equation (1) without any restriction,
apart from the trivial ones

ω > 0, g > 0, a2 > 0,

about the values of the parameters, we have found that a very natural change of variable
transforms it into a confluent Heun equation (CHE). Then, the energies E can be easily
obtained as the zeros of a function defined by a continued fraction. Of course, the results of
[1] are reproduced by our procedure. This allows us to relate, by a continuous variation of the
parameter g, the energy levels of the harmonic oscillator (g = 0) with those of the generalized
isotonic oscillator. Besides this, quasi-polynomial (i.e. product of a rational function times an
exponential times a polynomial) wavefunctions appear for specific energy levels and particular
values of the parameters ω, g and a, different from those considered in [1].

In section 2, we transform the Schrödinger equation (1) into a CHE. To solve it, we propose
an extremely simple algorithm that allows us to obtain the eigenvalues and the eigenfunctions
with a great accuracy. Results of that algorithm are shown in section 3. Quasi-polynomial
solutions of the Schrödinger equation are obtained in section 4. The relation of the polynomials
found by Cariñena et al [1] with confluent Heun polynomials is discussed in section 5. Some
final comments are added in section 6.

2. A confluent Heun equation

Equation (1) presents two regular singular points, at x = ±ia, and an irregular one of s-rank 3
at infinity. (In this paper we adopt the definition of s-rank of an irregular singular point given
in section 1.2 of the book by Slavyanov and Lay [4].) Taking advantage of the symmetry of
the potential, the number and/or rank of the singularities can be reduced by a very natural
mapping, namely

z = x2/a2. (2)

In this way, the upper half of the x-plane goes into the whole z-plane and the real axis
x ∈ (−∞, +∞), relevant from the physical point of view, is mapped into the positive real
semiaxis in the z-plane, covered from ∞ to 0 along the ray arg z = 2π and from 0 to ∞ along
the ray arg z = 0. The Schrödinger equation turns into

d2�

dz2
+

1

2z

d�

dz
+

[
−ω2a4

4
− g

2

z − 1

z(z + 1)2
+

Ea2

2z

]
� = 0, (3)

where the two free parameters ωa2 and g are assumed to be given, whereas Ea2 represents
the eigenvalues to be determined. Equation (3) has two regular singularities, at −1 and 0,
and an irregular one of s-rank 2 at infinity. This suggests one should compare it with some
of the various forms of the CHE, which present the same pattern of singularities. Extensive
discussions of the CHE can be found in [4, 5]. Equation (3), when written in the form

d2�

dz2
+

1

2z

d�

dz
+

[
−ω2a4

4
+

g/2

z
− g/2

z + 1
− g

(z + 1)2
+

Ea2

2z

]
� = 0, (4)

is an example of CHE in its natural form [5, equation (1.1.4)]. The singularity at z = −1,
coming from the singularity at x = ia, has indices

ρ1 = 1

2
(1 +

√
1 + 4g), ρ2 = 1

2
(1 −

√
1 + 4g). (5)
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The mapping (2) has introduced the singularity (branch point) at z = 0, with indices

ν1 = 0, ν2 = 1/2, (6)

which correspond, respectively, to even and odd solutions �(x). The singularity for z → ∞
corresponds to that for x → ∞. It is necessary to check that the two Thomé formal solutions
of (3) for z → ∞ behave as

exp

(
± ωa2

2
z

)
zμ± (1 + O(z−1)), with μ± = ∓ E

2ω
− 1

4
. (7)

The problem of finding the energy levels of the generalized isotonic oscillator reduces, thus, to
determine the values Ea2 such that the Floquet solutions (series of increasing powers of z) of
(3), corresponding to the indices ν1 or ν2, vanish at infinity according to (7) with the minus sign
in the argument of the exponential. This is the well-known connection problem of the singular
points at 0 and at ∞. The presence of the singular point at z = −1 prevents the convergence
of the Floquet solutions out of the unit disc. So, a process of analytic continuation would be
necessary to find their behavior for z → ∞. Instead of this, Slavyanov and Lay [4, section 3.6]
suggest carrying out a Jaffé transformation consisting of an adequate linear transformation of
the dependent variable followed by a Möbius transformation of the independent variable to
convert the interval z ∈ [0,∞) into the interval [0, 1] for the new variable. We have found it
convenient to substitute

�(z) = (z + 1)μ exp

(
− ωa2

2
z

)
w(z), with μ = μ− = E

2ω
− 1

4
, (8)

in (3) to get

d2w

dz2
+

(
−ωa2 +

1

2z
+

2μ

z+1

)
dw

dz
+

[
μ(ωa2+1/2)

z(z + 1)
+

μ(μ−1)

(z + 1)2
− g

2

z − 1

z(z+1)2

]
w = 0, (9)

and then to apply the Möbius transformation prescribed by Slavyanov and Lay

t = z

z + 1
, (10)

which transforms equation (9) into (keeping the same symbol to represent the dependent
variable in terms of the new independent one)

d2w

dt2
+

(
− ωa2

(1 − t)2
+

1

2t (1 − t)
+

2μ − 2

1 − t

)
dw

dt

+

(
μ(ωa2 + 1/2)

t (1 − t)2
+

μ(μ − 1)

(1 − t)2
− g

2

2t − 1

t (1 − t)2

)
w = 0, (11)

to be solved in the interval t ∈ [0, 1]. The energy levels are the values of E such that the ‘even’
(ν = ν1 = 0) or ‘odd’ (ν = ν2 = 1/2) series solution

w(t) = tν
∞∑

n=0

cn tn, c0 �= 0 (12)

becomes finite at t = 1. Substitution of (12) in (11) gives for the coefficients cn the recurrence
relation

An+1 cn+1 + Bn cn + Cn−1 cn−1 = 0, (13)

where we have abbreviated

Am = (m + ν)(m + ν − 1/2),

Bm = (m + ν)(−2m − 2ν − ωa2 + 2μ − 1/2) + μ(ωa2 + 1/2) + g/2,

Cm = (m + ν)(m + 1 + ν − 2μ) + μ(μ − 1) − g.

3
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The recurrence relation (13) is an irregular difference equation of the Poincaré–Perron type.
The procedure suggested by Slavyanov and Lay to solve the connection problem consists
in considering the physically acceptable solution of (13) as a linear combination of its two
Birkhoff solutions and adjusting the value of Ea2 so as to reach the cancellation of the
coefficient of the exponentially divergent one. Instead of this, we have preferred to base
ourselves on the algorithms proposed by Gautschi [6] to find minimal solutions of three-term
recurrence relations. The crucial consideration is that the solution minimal for n → ∞ turns
out to be dominant when the recurrence is used ‘from tail to head’. Bearing this in mind, we
write the above recurrence relation in the form

cn−1

cn

= − Bn

Cn−1
−

An+1
Cn−1

cn

cn+1

(14)

and use it to compute c−1/c0, starting with the approximate value

cn

cn+1
� 1 +

√
ωa2

n1/2
, for n sufficiently large, (15)

obtained from the characteristic equation [4, section 1.6.3] of the recurrence relation. The
energy levels are obtained from the values of Ea2 such that one gets

c−1/c0 = 0, (16)

which implies c−1 = 0 and, in view of (13), c−2 = c−3 = · · · = 0.

3. Some results

We have applied the above-described algorithm to the determination of the four lowest states
of a generalized harmonic oscillator with intensity g varying from g = 0 (harmonic oscillator)
to g = 20, for two typical values of ωa2, namely ωa2 = 1/2 and ωa2 = 2. The results are
shown in figures 1 and 2. The behavior of the eigenenergies, as g increases from zero, can be
easily understood in view of the probability density of the harmonic oscillator eigenstates and
the fact that the additional potential

g
x2 − a2

(x2 + a2)2

is negative for |x| < a and positive for |x| > a [1, figure 1]. For low values of g, the effects on
the energy of the positive and negative parts of that potential almost cancel each other, except
for the fundamental state whose density probability concentrates near the origin, where the
additional potential is negative. This explains the gap between the energies of the fundamental
and the first excited states encountered by Cariñena et al [1] in the case of ωa2 = 1/2 and
g = 2. As g increases further, the deeper the potential well at the origin begins to decrease
the energies of more and more excited states.

For possible numerical comparison with results obtained by other methods, we report
ours, for some arbitrarily chosen values of g, in tables 1 and 2. The energies of the four
lowest states, given with ten decimal digits, have been obtained by using a double precision
FORTRAN code. The presence, in table 1, of exact values of the energy in the case of g = 2
is not surprising: this is the exactly solvable case discussed by Cariñena et al. [1]. More
intriguing are the exact values of E1a

2 and E2a
2 found in table 1 for g = 12 and those of E0a

2

for g = 20 and of E1a
2 for g = 42 in table 2. As we are going to show in the following section,

these are also cases of quasi-polynomial wavefunctions. For those values of the parameters,
one could speak of quasi-exactly solvable potentials.

4
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Figure 1. Variation of the four lowest energy levels of the generalized isotonic oscillator with the
intensity g. The parameters ω and a of the oscillator are assumed to be such that ωa2 = 1/2.
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Figure 2. Variation of the four lowest energy levels of the generalized isotonic oscillator with the
intensity g, for ωa2 = 2.

5



J. Phys. A: Math. Theor. 43 (2010) 185303 J Sesma

Table 1. Energies of the four lowest states of the generalized isotonic oscillator of parameters ω

and a such that ωa2 = 1/2 and for some particular values of g.

g E0a
2 E1a

2 E2a
2 E3a

2

0.000 01 0.249 996 5567 0.750 000 3296 1.249 999 3408 1.750 000 0608
0.1 0.214 544 9837 0.753 170 0367 1.243 863 1419 1.750 561 2654
1 −0.184 964 6064 0.768 636 8018 1.224 172 6194 1.751 990 5648
2 −0.75 0.75 1.25 1.75
10 −6.693 929 2571 −1.342 630 8508 1.433 548 1682 2.109 257 7781
12 −8.329 621 1722 −2.25 1.25 2.254 865 6278
20 −15.107 413 7799 −6.582 018 0239 −0.609 720 1160 2.604 399 390 0
50 −41.939 569 6487 −27.075 077 8124 −14.736 317 7369 −4.962 319 3955

Table 2. Energies of the four lowest states of the generalized isotonic oscillator of parameters ω

and a such that ωa2 = 2 and for some chosen values of g.

g E0a
2 E1a

2 E2a
2 E3a

2

0.000 01 0.999 993 7095 2.999 997 7428 4.999 998 4646 6.999 998 9879
0.1 0.936 865 7901 2.977 274 2737 4.984 713 3541 6.989 892 9491
1 0.349 595 3307 2.758 891 1779 4.851 946 6428 6.900 301 3951
2 −0.337 237 2644 2.487 025 7918 4.709 976 2556 6.803 992 3347
5 −2.549 035 1910 1.494 183 2183 4.268 043 1727 6.534 685 2493
10 −6.529 142 7792 −0.660 939 3149 3.318 493 9783 6.100 400 0480
12 −8.182 546 1552 −1.659 292 2308 2.838 014 6272 5.905 881 5492
20 −15 −6.182 546 1552 0.340 707 7692 4.838 014 6272
42 −34.591 004 5651 −21 −9.855 188 8685 −1.128 149 4657
50 −41.876 959 7362 −26.863 072 3075 −14.310 287 3432 −4.206 192 0738

4. Quasi-polynomial solutions

The study of the generalized isotonic oscillator carried out by Cariñena et al [1] revealed the
existence of quasi-polynomial solutions for certain values of the parameters. Specifically, they
found that, if the parameters are related in the form

g = 2ωa2(2ωa2 + 1), (17)

equation (1) admits a quasi-polynomial solution

�0 = N0

(a2 + x2)2ωa2 exp

(
−1

2
ωx2

)
, E0 = 1

2
ω − (2ωa)2, (18)

with N0 being a normalization constant. It corresponds to the ground state of that generalized
isotonic oscillator. More interestingly, they found that if, besides equation (17), one has

ωa2 = 1/2, (19)

all eigenstates, of energies

Em = (m − 3/2)ω,

are represented by quasi-polynomial wavefunctions

�m(x) = Nm

ω(x2 + a2)
exp

(
−ω

2
x2

)
Pm(ω1/2x), m = 0, 3, 4, . . . , (20)

6



J. Phys. A: Math. Theor. 43 (2010) 185303 J Sesma

the polynomials Pm being linear combinations of three consecutive Hermite polynomials of
the same parity.

The fact that simple analytic solutions of quantum problems, for particular values of the
parameters, can serve as a check on numerical calculations was already pointed out by Demkov
[7] in his study of the motion of a particle in the field of two Coulomb centers. He found that
for a certain set of values of the charges Z1 and Z2 of the centers and the distance R between
them, the wavefunction becomes quasi-polynomial when written in ellipsoidal coordinates.

In order to analyze the possible existence of quasi-polynomial solutions of equation (3),
it is convenient to make explicit the behavior of such solutions at the singular points. With
this purpose we write

�(z) = (z + 1)ρ zν exp

(
−ωa2

2
z

)
�(z), (21)

where ρ represents either ρ1 or ρ2, given by (5) and such that

ρ(ρ − 1) = g,

and, according to (6), ν = ν1 = 0 in the case of even wavefunctions and ν = ν2 = 1/2 for
odd ones. The equation satisfied by �(z),

d2�

dz2
+

(
−ωa2 +

2ν + 1/2

z
+

2ρ

z + 1

)
d�

dz

+
ωa2(μ − ν − ρ)z + ωa2(μ − ν) + ρ(2ν + ρ/2)

z(z + 1)
� = 0, (22)

with μ given in equation (8), is again an example of CHE. In fact, the change of variable
z −→ −z permits us to compare it with the non-symmetrical canonical form of the CHE
[5, equation (1.2.27)]. Polynomial solutions of the CHE have been studied by Slavyanov
[5, section 3.4]. His analysis, however, is not directly applicable to our problem due to the
different role played by the parameters in his equation and in ours.

It is possible to write a formal solution of (22) as a power series

�(z) =
∞∑

n=0

an zn, (23)

with coefficients obeying the recurrence relation

αn+2 an+2 + βn+1 an+1 + γn an = 0, with a−1 = 0, a0 �= 0, arbitrary, (24)

where we have abbreviated

αm = m(m + 2ν − 1/2),

βm = m(m − ωa2 + 2ν + 2ρ − 1/2) + ωa2(μ − ν) + ρ(2ν + ρ/2),

γm = −ωa2(m − (μ − ν − ρ)).

Obviously, the series on the right-hand side of (23) reduces to a polynomial

�(z) = Qk =
k∑

n=0

an,k zn, (25)

the coefficients an,k being solution of (24), if the two conditions

γk = 0 and ak+1,k = 0 (26)

are satisfied. Assuming that the parameters ω and a2 are given, the first one of those conditions
gives the eigenenergy

E = (2k + 2ρ + 2ν + 1/2) ω (27)

7
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in terms of ρ, whereas the second one determines the values of ρ and consequently of g, for
which the quasi-polynomial (21), with �(z) replaced by Qk(z), is a solution. Note that the
second condition (26) can be equivalently expressed as the cancellation of the determinant of
a tridiagonal (k + 1) × (k + 1) matrix,

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 α1

γ0 β1 α2

γ1 β2 α3

. . .
. . .

. . .

γk−2 βk−1 αk

γk−1 βk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (28)

with μ replaced by k + ν + ρ in the expressions of αm, βm and γm given above. The left-hand
side of (28) is a polynomial of degree 2(k + 1) in ρ. One of its roots, for every value of k,
is ρ = 0: the pure harmonic oscillator possesses quasi-polynomial solutions of every degree.
Obviously, conjugate pairs of complex roots may appear, but these are not interesting, in view
of the restriction g > 0. The real roots are easily obtained algebraically or numerically. To
illustrate, we report the results obtained in the cases of k = 0, 1, 2 and for the two values of
ωa2 considered in tables 1 and 2, respectively.

4.1. Case k = 0

The first of conditions (26), γ0 = 0, gives μ = ν + ρ and, in view of (8),

E = (2ρ + 2ν + 1/2) ω. (29)

The second condition, β0 = 0, gives

ρ (ωa2 + 2ν + ρ/2) = 0 (30)

that, besides the trivial one ρ = 0, has the solution

ρ = −(2ωa2 + 4ν), i.e. g = (2ωa2 + 4ν)(2ωa2 + 4ν + 1). (31)

4.1.1. Even solutions (ν = 0). In the case of

ρ = −2ωa2, i.e. g = 2ωa2(2ωa2 + 1),

and for the energy

E = (−4ωa2 + 1/2)ω,

one has the quasi-polynomial solution

�(z) ∝ (z + 1)−2ωa2
exp

(
−ωa2

2
z

)

or, in terms of the original notation,

�(x) ∝ (x2 + a2)−2ωa2
exp

(
−ω

2
x2

)
.

This is the solution mentioned in equation (2) of [1]. It can be recognized in our tables 1
(ground state for g = 2) and 2 (ground state for g = 20).

8
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4.1.2. Odd solutions (ν = 1/2). For

ρ = −2ωa2 − 2, i.e. g = (2ωa2 + 2)(2ωa2 + 3),

and energy

E = (−4ωa2 − 5/2)ω,

one finds the quasi-polynomial solution

�(z) ∝ (z + 1)−2ωa2−2z1/2 exp

(
−ωa2

2
z

)
or, in terms of the variable x,

�(x) ∝ (x2 + a2)−2ωa2−2x exp
(
−ω

2
x2

)
.

Examples of the case under consideration appear in tables 1 (first excited state for g = 12)
and 2 (first excited state for g = 42).

4.2. Case k = 1

4.2.1. Even solutions (ν = 0). Now, from (27), we have

E = (2ρ + 5/2)ω.

and, from (28),
1
4ρ(ρ3 + 4(ωa2 + 1)ρ2 + (4ω2a4 + 10ωa2 + 1)ρ + 2ωa2(2ωa2 + 5)) = 0.

For ωa2 = 1/2, there is a nontrivial real solution

ρ = −A1/3/3 − 2 − 5A−1/3, with A = 3(36 −
√

921),

corresponding to an intensity of the additional potential

g = A2/3/9 + 5A1/3/3 + 28/3 + 25A−1/3 + 25A−2/3.

For ωa2 = 2, there is also one nontrivial real solution

ρ = −B1/3/3 − 4 − 11B−1/3, with B = 3(72 −
√

1191),

to which it corresponds

g = B2/3/9 + 3B1/3 + 82/3 + 99B−1/3 + 121B−2/3.

4.2.2. Odd solutions (ν = 1/2). For energy we have the value

E = (2ρ + 7/2)ω,

and for ρ the equation
1
4ρ(ρ3 + 4(ωa2 + 2)ρ2 + (4ω2a4 + 18ωa2 + 15)ρ + 2(2ω2a4 + 9ωa2 + 3)) = 0,

For ωa2 = 1/2, one gets three nontrivial real solutions, namely,

ρ = −1, ρ = − 1
2 (9 − √

17), ρ = − 1
2 (9 +

√
17),

with corresponding intensities

g = 2, g = 29 − 5
√

17, g = 29 + 5
√

17.

For ωa2 = 2, one also obtains three nontrivial real solutions

ρ = −(1/3)(16 − 551/3 · 2 
((−1 + 3i
√

6)1/3)),

ρ = −(1/3)(16 + 551/3 
((1 + i
√

3)(−1 + 3i
√

6)1/3)),

ρ = −(1/3)(16 + 551/3 
((1 − i
√

3)(−1 + 3i
√

6)1/3)).

The corresponding values of g are obtained by using

g = ρ(ρ − 1). (32)

9
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4.3. Case k = 2

4.3.1. Even solutions (ν = 0). The energy is now given by

E = (2ρ + 9/2)ω,

where ρ is a solution of
1
8 ρ(ρ5 + 6(ωa2 + 2)ρ4 + 3(4ω2a4 + 18ωa2 + 13)ρ3 + 4(2ω3a6 + 18ω2a4 + 39ωa2 + 8)ρ2

+ 2(12ω3a6 + 82ω2a4 + 108ωa2 + 3)ρ + 4(4ω3a6 + 28ω2a4 + 27ωa2)) = 0.

For ωa2 = 1/2, this equation has, besides the trivial solution, two complex and the real ones

ρ = −1,

ρ = − 1
2 (7 + C1/2 − (37 − C + 64 C−1/2)1/2),

ρ = − 1
2 (7 + C1/2 + (37 − C + 64 C−1/2)1/2),

where we have abbreviated

C = 1
3 (37 + 51/3((7967 − 6

√
883749)1/3 + (7967 + 6

√
883749)1/3)).

The corresponding intensities of the additional potential are given by equation (32).
For ωa2 = 2, there are also three nontrivial real solutions,

ρ � −1.081 349 183 014 075 3, ρ � −7.226 942 179 911 15,

ρ � −11.525 122 115 065 377,

which correspond to

g � 2.250 665 238 619 2836, g � 59.455 635 451 690 08,

g � 144.353 561 882 2344.

4.3.2. Odd solutions (ν = 1/2). We have for the energy

E = (2ρ + 11/2)ω,

and for ρ

1
8 ρ(ρ5 + 6(ωa2 + 3)ρ4 + 3(4ω2a4 + 26ωa2 + 35)ρ3 + 4(2ω3a6 + 24ω2a4 + 81ωa2 + 59)ρ2

+ 2(12ω3a6 + 118ω2a4 + 276ωa2 + 105)ρ + 4(4ω3a6 + 40ω2a4 + 75ωa2 + 15)) = 0.

For ωa2 = 1/2, we obtain three nontrivial real solutions,

ν = −1,

ν = −5 − 1
2 (D1/2 − (46 − D + 52 D−1/2)1/2),

ν = −5 − 1
2 (D1/2 + (46 − D + 52 D−1/2)1/2),

where

D = 1
3 (46 + (56575 − 12

√
3456147)1/3 + (56575 + 12

√
3456147)1/3).

The corresponding values of g follow from equation (32).
For ωa2 = 2, there are also three nontrivial real solutions,

ρ � −1.052 799 089 860 6965, ρ � −9.180 564 905 703 85,

ρ � −13.307 737 259 734 79,

corresponding to intensities

g � 2.161 185 013 472 2075, g � 93.463 336 893 544 99,

g � 190.403 608 234 936 83.

10



J. Phys. A: Math. Theor. 43 (2010) 185303 J Sesma

None of the above considered cases explains the value E2a
2 = 5/4 found for ωa2 = 1/2

(table 1) and g = 12. It is not difficult to see that it corresponds to k = 4, ν = 0 and ρ = −3.
The wavefunction is in this case

�(z) ∝ (z + 1)−3 exp(−z/4)(1 − 10z − 4z2 − (2/3)z3 − (1/21)z4),

that is, in terms of x,

�(x) ∝ (x2 + a2)−3 exp(−x2/4a2)

(
1 − 10x2

a2
− 4x4

a4
− 2x6

3a6
− x8

21a8

)
.

5. The exactly solvable case

In the preceding section we have found, whenever ωa2 = 1/2, a quasi-polynomial solution
with ρ = −1 for almost every considered value of k and in both cases of even or odd
wavefunctions. There are only two exceptions, namely the case of k = 0, ν = 1/2 and that
of k = 1, ν = 0. Although we have not discussed the cases of k = 3, 4, . . . , one can easily
check that the same value ρ = −1 appears for ν = 0 and for ν = 1/2 in all cases. This was to
be expected, since for ωa2 = 1/2 and ρ = −1, i.e. g = 2, the generalized isotonic potential
is exactly solvable [1]. In what follows, we show that the polynomials entering the solutions
found by Cariñena et al are in fact confluent Heun polynomials.

We assume from now on that ωa2 = 1/2, ρ = −1 and μ = k + ν − 1, k being a positive
integer. According to equations (21), (22) and (25), the quasi-polynomial solutions are of the
form

�(z) = (z + 1)−1 zν exp(−z/4)Q(ν)
k (z), ν = 0, 1/2, (33)

the polynomial (of degree k) Q(ν)
k obeying the differential equation

d2Q(ν)
k

dz2
+

(
−1

2
+

2ν + 1/2

z
− 2

z + 1

)
dQ(ν)

k

dz
+

kz/2 + k/2 − 2ν

z(z + 1)
Q(ν)

k = 0. (34)

This is but a particular case of equation (22) that, as we have already mentioned, is a CHE.
Confluent Heun polynomials can be written as linear combinations of hypergeometric or
confluent hypergeometric polynomials [5, section 2.3]. This second possibility is more
convenient for a comparison with the results of Cariñena et al [1]. With this purpose, we
introduce a new variable

y = z

2
= x2

2a2
, (35)

in terms of which the differential equation reads

(y + 1/2)y
d2Q(ν)

k

dy2
+ ((y + 1/2)(2ν + 1/2−y) − 2y)

dQ(ν)
k

dy
+ ((y + 1/2)k − 2ν)Q(ν)

k = 0,

(36)

that can be written in the form

((y + 1/2)D0 + D1)Q(ν)
k = 0 (37)

with the differential operators

D0 ≡ y
d2

dy2
+ (2ν + 1/2 − y)

d

dy
+ k, (38)

D1 ≡ −2y
d

dy
− 2ν. (39)
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Now we try in (37) the sum of confluent hypergeometric polynomials

Q(ν)
k =

k∑
n=0

A(ν)
n,k M(−(k − n), 2ν + 1/2, y), (40)

with coefficients A(ν)
n,k to be determined. According to equations (13.1.1) and (13.4.10),

respectively, of [8], one has

D0 M(−(k − n), 2ν + 1/2, y) = nM(−(k − n), 2ν + 1/2, y), (41)

D1 M(−(k − n), 2ν + 1/2, y) = −2(k − n + ν)M(−(k − n), 2ν + 1/2, y)

+ 2(k − n)M(−(k − n) + 1, 2ν + 1/2, y), (42)

and equation (37) turns into

k∑
n=0

A(ν)
n,k ((n(y + 5/2) − 2k − 2ν)M(−(k − n), 2ν + 1/2, y)

+ 2(k − n)M(−(k − n) + 1, 2ν + 1/2, y)) = 0. (43)

Cancellation of the coefficients of the successively decreasing powers of y on the left-hand
side of the last equation gives, for k � 2,

A(ν)
0,k arbitrary,

A(ν)
1,k = −2

k + ν

k + 2ν − 1/2
A(ν)

0,k,

A(ν)
2,k = 2k2 − 3k + 4kν − 2ν

2(k + 2ν − 1/2)(k + 2ν − 3/2)
A(ν)

0,k,

A(ν)
3,k = A(ν)

4,k = · · · = 0,

in both cases of ν = 0 and ν = 1/2. Substitution of these expressions in (40) gives

Q(0)
k = A(0)

0,k

(
M(−k, 1/2, y)− 2k

k − 1
2

M(−k+1, 1/2, y)+
k

k − 1
2

M(−k + 2, 1/2, y)

)
, (44)

Q(1/2)

k = A(1/2)

0,k

(
M(−k, 3/2, y) − 2 M(−k + 1, 3/2, y) +

k − 1

k − 1
2

M(−k + 2, 3/2, y)

)
. (45)

Now we can use the relations between confluent hypergeometric and Hermite polynomials
[8, equations (22.5.56) and (22.5.57)] [9, section 10.13, equations (17) and (18)]

M(−m, 1/2, y) = (−1)m
m!

(2m)!
H2m(

√
y), (46)

√
y M(−m, 3/2, y) = (−1)m

m!

2(2m + 1)!
H2m+1(

√
y), (47)

and choose

A(0)
0,k = (−1)k

(2k)!

k!
and A(1/2)

0,k = (−1)k
21/2(2k + 1)!

k!
(48)

to get

Q(0)
k = H2k(

√
y) + 8kH2k−2(

√
y) + 8k(2k − 3)H2k−4(

√
y), (49)
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z1/2 Q(1/2)

k = H2k+1(
√

y) + 4(2k + 1)H2k−1(
√

y) + 4(2k + 1)(2k − 2)H2k−3(
√

y), (50)

which are, respectively, the polynomials P2k and P2k+1 of [1], the variable being
√

y = x√
2 a

= √
ω x. (51)

In the above discussion of equation (43) we have left aside the cases of k = 0 and k = 1.
For k = 0 and ν = 0, equation (43) is satisfied irrespective of the value of A(0)

0,0, whereas

for ν = 1/2 its fulfilment requires A(1/2)

0,0 = 0, which implies that the resulting Q(1/2)

0 is
identically equal to zero. For k = 1, instead, equation (43) is satisfied, for ν = 0, only if
A(0)

0,1 = A(0)
1,1 = 0 and consequently Q(0)

1 identically equal to zero, whereas for ν = 1/2 it only

requires A(1/2)

1,1 = −2A(1/2)

0,1 . All this is in accordance with the two exceptional cases of k = 0,
ν = 1/2, and k = 1, ν = 0, encountered in [1] and mentioned at the beginning of this section.

6. Final comments

Most of the quantum mechanical problems which admit a simple solution are of the
hypergeometric class: the corresponding Schrödinger equation turns, by an adequate
transformation, into a hypergeometric or a confluent hypergeometric one. In this paper,
we have shown that the generalized quantum isotonic oscillator belongs to the Heun class.
Other examples of physical problems of this class can be found in chapter 4 of [4].

Up to now, the most appealing feature of the generalized quantum isotonic potential was
its exact solvability for certain values of its parameters [1]. The fact, shown in this paper,
that it is quasi-exactly solvable when those parameters take particular values spread over a
wide range makes it to be especially suited to serve as a workbench to test the accuracy of
approximate (perturbative, variational, etc) methods of solution of the Schrödinger equation.

Quasi-exact solvability of quantum Hamiltonians is closely related to their Lie-algebraic
properties [10]. A discussion of this topic with reference to the generalized isotonic oscillator
would be necessary, but it lies out of the scope of this paper.

The sequence {Pn} arising in the exactly solvable case [1] does not include a linear
(n = 1) nor a quadratic (n = 2) polynomials. Therefore, it cannot be used as a basis for an
expansion. Similar sequences of polynomial eigenfunctions of a Sturm–Liouville problem
have been found by Gómez-Ullate, Kamran and Milson [11] and by Quesne [12]. In the case
of the first authors, the sequences do not include the constant (n = 0) polynomial. Quesne
has found sequences without the constant polynomial and also sequences without the constant
and the linear polynomials. Nevertheless, the first authors have proved that such sequences,
which they denominate exceptional polynomial systems, are a basis in their corresponding L2

Hilbert spaces. Besides, Gómez-Ullate, Kamran and Milson [13] have given an extension of
Bochner’s theorem applicable to those sequences of orthogonal polynomials, the solution of a
Sturm–Liouville problem, that start with a polynomial of degree 1. It would be interesting to
explore the possibility of an analogous extension of the theorem for sequences of polynomials
like that discussed in [1], where the absent polynomials are not the lowest order ones.
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with their paper and for plenty of fruitful comments. The suggestions of two anonymous
referees have greatly contributed to improve the presentation of this article. Financial aid of
Comisión Interministerial de Ciencia y Tecnologı́a and of Diputación General de Aragón is
acknowledged.

13



J. Phys. A: Math. Theor. 43 (2010) 185303 J Sesma

References
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